
Perceptual abilities undergo major development during infancy
and childhood – for example, for detecting low-contrast stimuli
(Adams & Courage 2002) and noisy patterns of motion (Hadad
et al. 2011) or recognising complex stimuli such as faces
(Mondloch et al. 2002). Classically, the focus of perceptual devel-
opment research has been on improvements in sensitivity (likeli-
hoods). As reviewed in the target article, decades of adult research
show how sensitivity changes can result from changes within a
decision-model framework that incorporates likelihoods, priors,
cost functions, and decision rules. Applying this framework to
development, we argue that perceptual improvements must be
explained in terms of changes to these components. This will
lead to a new understanding of how perceptual systems attain
their more highly optimised mature state.

Specifically, we need to know the following:

(1) Which elements of the observer model are changing (develop-
ing), leading to improvements in perceptual function? Recent
evidence suggests that multiple components of the decision
model are developing significantly during childhood. Until
late into childhood, observers are still using decision rules
less efficiently: misweighting informative cues (Gori et al.
2008; Manning et al. 2014; Sweeny et al. 2015) or using quali-
tatively different decision rules altogether (Jones & Dekker
2017; Nardini et al. 2008; 2010). Other studies show abilities
to learn and use priors and costs also to be developing late
into childhood (e.g., Dekker & Nardini 2016; Stone 2011;
Thomas et al. 2010). The new, model-based approach to devel-
opment pioneered in these studies paves the way for under-
standing how likelihoods, priors, cost functions, and decision
rules are shaped as children learn, and for testing which com-
mon processes can explain perceptual development across a
range of different tasks. Studies to date have successfully cap-
tured developmental changes in performance by fitting how
parameters of specific components of the decision model
change with age on single tasks. This usefully sets quantitative
bounds on potential changes in these processes, but the data
are often compatible with more than one account. For
example, in a rewarded reaching task (Dekker & Nardini
2016), children up to the age of 11 years aim too close to a pen-
alty region to maximise their score, reflecting overconfidence
in likelihood of hitting the target, underestimation of cost, or
a central pointing prior. An important way forward is therefore
to evaluate the fit of developmental models to multiple tasks
and to test their predictions on new tasks.

(2) How are more efficient and adult-like decision rules, priors, and
cost functions acquired during development? Beyond character-
ising the changes in decision-model components underlying
perceptual development, the ultimate aim is to understand
the mechanisms driving these changes. A major contributing
factor is likely to be experience, which shapes the sensitivity
of neuronal detectors, determining likelihoods (Blakemore &
Van Sluyters 1975), changes priors (Adams et al. 2004), and
is needed to learn the potential consequences of actions
(cost factors). It is not clear in which circumstances such
experience is generalizable (e.g., priors or costs learned during
one task applied to another), how experience drives learning of
decision rules, or whether there are sensitive periods like those
for sensitivities (likelihoods) in other parts of the decision
model (e.g., for learning priors). A useful approach is investi-
gating the neural changes supporting improvements in
decision-model components as perception becomes more

optimised, such as more precise representation of likelihoods
(Van Bergen et al. 2015) and values (Wu et al. 2011), or
more precise computing of weighted averages, perhaps imple-
mented via divisive normalisation (Ohshiro et al. 2011). The
power of this approach is demonstrated by recent studies of
developmental disorders, in which there are exciting develop-
ments in linking components of observer models to specific
neural mechanisms (Rosenberg et al. 2015). For example, in
autism, tasks that involve combining new evidence with
prior knowledge are disproportionally affected, and this has
recently been linked to the overweighting of sensory likeli-
hoods versus priors, possibly because of altered neural opera-
tions mediated by noradrenaline and acetylcholine (Lawson
et al. 2017). In addition, a new, model-based approach to
developmental neuroimaging lets us disentangle components
of the developing decision model across different neural pro-
cessing stages. We recently showed that development of cue
integration during depth perception was linked to a shift
from using depth cues independently to combining them, by
neural detectors in sensory cortex (adopting a “fusion” rule;
Dekker et al. 2015). This suggests that the late development
of cue integration is driven by a change in how sensory infor-
mation is combined (sensory decision rule), rather than
improved readout of the fused estimate during task perform-
ance (higher-order decision rule or cost function). These stud-
ies demonstrate how a developmental approach can provide
computational-level understanding of the crucial ingredients
for building a mature optimised observer.

The end goal of this approach is an observer model incorpor-
ating processes of learning and development: a developing stand-
ard observer model. This will provide a more complete
understanding of perceptual systems and a basis for developing
intelligent machines that can learn to perceive in novel environ-
ments. For example, understanding the structure of experience
that scaffolds our ability to transfer previous likelihoods, cost
functions, and decision rules from one task to another can inform
the development of more flexible artificial intelligence (AI) agents
(Wang et al. 2017). Similarly, significant improvements in robotic
grasp performance have been gained from incorporating develop-
mental stages such as motor babbling and gradual improvements
in visual acuity into the training regime (Cangelosi et al. 2015). In
addition, understanding which developmental changes in the
decision model (e.g., sensitivity vs. decision rule) drive perceptual
improvements at different ages will provide a crucial basis for bet-
ter training of perception and action in patients with sensory loss.

Supra-optimality may emanate from
suboptimality, and hence optimality
is no benchmark in
multisensory integration

Jean-Paul Noel

Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240.
jean-paul.noel@vanderbilt.edu http://jeanpaulnoel.com/

doi:10.1017/S0140525X18001280, e239

32 Commentary/Rahnev and Denison: Suboptimality in perceptual decision making

D , JJJ 86 7 9 : C 8C : :  D , 9C  C  2 4
.CJ C69:9 C D , JJJ 86 7 9 : C 8C : 153 28 CC C 0:9 8 : C /6 6 , , 7 :8 C : 6 7 9 : C : : C : 6 6 67 : 6



Abstract

Within a multisensory context, “optimality” has been used as a
benchmark evidencing interdependent sensory channels.
However, “optimality” does not truly bifurcate a spectrum from
suboptimal to supra-optimal – where optimal and supra-optimal,
but not suboptimal, indicate integration – as supra-optimalitymay
result from the suboptimal integration of a present unisensory
stimuli and an absent one (audio = audio + absence of vision).

Arguably the study of multisensory integration was born from the
recording of spikes in the feline superior colliculus (Stein &
Meredith 1993). These early studies presented animals with sim-
ple visual (V) flashes and auditory (A) beeps and held the occur-
rence of supra-additive responses (i.e., audiovisual [AV] responses
greater than the sum of auditory and visual responses) as the hall-
mark for multisensory integration. However, this phenomenon is
not common in the neocortical mantle (vs. subcortex; Frens &
Van Opstal 1998), nor when multisensory integration is indexed
via behavior or by measuring ensembles of neurons (e.g., local
field potentials, electroencephalography [EEG], functional mag-
netic resonance imaging [fMRI]; Beauchamp 2005). Hence, over
the last two decades there has been a greater appreciation for sub-
additive responses as equally demonstrating an interesting trans-
formation from input (i.e., A + V) to output (i.e., AV), and thus
highlighting the synthesis of information across senses. That is,
arguably the classic study of multisensory integration has grown
to conceive of sub- and supra-additivity as being on extremes of
a spectrum where both ends are interesting and informative.

In parallel, the originally described “principles of multisensory
integration” (e.g., information that is in close spatial and temporal
proximity will be integrated) have been translated to a computa-
tional language that is seemingly applicable throughout the cortex
and widely observed in behavior. As Rahnev & Denison (R&D)
underline in their review, this computational framework dictating
much of the current work within the multisensory field is that of
Bayesian decision theory. Indeed, among others, audiovisual
(Alais & Burr 2004), visuo-tactile (Ernst & Banks 2002), visuo-
vestibular (Fetsch et al. 2009), and visuo-proprioceptive (van
Beers et al. 1999) pairings have been demonstrated to abide by
maximum likelihood estimation (MLE) – the weighting of likeli-
hoods by relative reliabilities and concurrent reduction in inte-
grated (vs. unisensory) variance. Given this extensive body of
literature, I believe the gut reaction of many multisensory
researchers – mine included – to this review and the thesis that
assessing optimality is not useful was that we must acknowledge
the limitations of solely considering “optimality” without examin-
ing the underlying components (e.g., prior, cost function), but
that this construct is nevertheless valuable. If subjects behave opti-
mally (i.e., reduction of uncertainty), then at minimum, there is
evidence for interdependent channels. Namely, the reduction of
variance in multisensory cases (vs. unisensory) is evidence for
the fact that at some point, unisensory components are fused;
the next step is to understand exactly how these channels are
fused. Furthering this argument, it could be conceived that
supra- and suboptimality exist on a continuum where evidence
for supra-optimality or optimality is evidence for multisensory
integration (admittedly without providing much mechanistic
insight given the points raised by R&D), while suboptimality
does not bear evidence of a synthesis across the senses. In other
words, indexing optimality as a benchmark for integration is

useful because Bayesian computations are ubiquitous in the
brain and behavior, and in that it reduces the state space of inte-
gration from “anything apart from linear summation” (i.e., from
sub-additive to supra-additive excluding additive) to “anything
greater than or equal to optimal” (i.e., from optimal to
supra-optimal but not suboptimal).

However, upon further consideration, I believe this reasoning
to be erroneous (and therefore I agree with the thesis put forward
by R&D). In short, contrarily to the case of additivity, optimality
does not lie on a spectrum from sub- to supra-optimal, and hence
optimality per se is no benchmark.

Traditionally, supra-optimality (an apparent impossibility)
within multisensory systems has been hypothesized to emerge
from a process of “active sensing” (Schroeder et al. 2010). That is,
the presence of a second sensory stimulus (e.g., A) may sharpen
the representation of a first unisensory stimulus (e.g., V) so that
when these are combined (e.g., AV), sharper unisensory estimates
than originally considered are combined, resulting in apparently
supra-optimality. Nonetheless, as Shalom and Zaidel (2018) have
recently highlighted, somewhat paradoxically, it could additionally
be the case that supra-optimality results from suboptimal integra-
tion. Namely, researchers typically take unisensory likelihoods at
face value. However, within a multisensory (e.g., AV) context, the
presentation of auditory stimuli alone is in fact not auditory alone
(e.g., A), but instead the presence of auditory information and the
absence of visual information (e.g., A + no V). Therefore, in this
example, researchers are underestimating the reliability of the audi-
tory channel (which is truly A-likelihood + a flat visual likelihood),
whichwill ultimately result in claims of supra-optimalmultisensory
integration. This second observation (by Shalom & Zaidel 2018) is
similar to the case of active sensing, in that the sharpness of unisen-
sory likelihoods is underestimated. However, the perspective is
quite different in that supra-optimality is not the result of cross-
modal feedback enhancing unisensory representation solely when
presented in a multisensory context, but in fact, in this latter case,
supra-optimality is merely an experimental construct that results
from the erroneous underestimation of a unisensory likelihoods;
theworld is by naturemultisensory, and hence unisensory estimates
are impoverished estimates wherein a cue has been artificially
removed. That is, supra-optimality can result from the non-optimal
integration of a signal (e.g., A) and noise (e.g., a non-present V sig-
nal). In turn, there is no true gradient between supra- and subop-
timality, and hence positioning optimality as a benchmark
bifurcating between multisensory fusion and fission is ill advised.
Instead, as highlighted by R&D, we ought to conceive of (multisen-
sory) perception as a dynamic systemwhere likelihoods, priors, cost
functions, and decision criteria all interact interdependently in both
feedforward and feedback manners.
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